
Reflective Bump MappingReflective Bump Mapping
Cass Everitt

NVIDIA Corporation
cass@nvidia.com

2

Overview

• Review of per-vertex reflection mapping
• Bump mapping and reflection mapping

• Reflective Bump Mapping
• Pseudo-reflective bump mapping

• Offset bump mapping, or EMBM (misnomer)
• Tangent-space support?
• Common usage

• True Reflective bump mapping
• Simple object-space implementation
• Supports tangent-space, and more normal control

3

Per-Vertex Reflection Mapping
• Normals are transformed into eye-space
• “u” vector is the normalized eye-space vertex

position
• Reflection vector is calculated in eye-space as

Note that this equation depends on n being unit length

• Reflection vector is transformed into cubemap-
space with the texture matrix
• Since the cubemap represents the environment,

cubemap-space is typically the same as world-
space

• OpenGL does not have an explicit world-space, but
the application usually does

)(2 unnur •−=

4

Per-Vertex Reflection Mapping
Diagram

-z

-x x

eye

r

n e

cube
map

Eye Space

-z

-x x
r

n e

eyecube
map

Cube Map Space
(usually world space)

texture
matrix

Reflection vector is computed
in eye space and rotated in to

cubemap space by the
texture matrix

5

Bump Mapping and
Reflection Mapping

• Bump mapping and (per-vertex) reflection
mapping don’t look right together
• Reflection Mapping is a form of specular lighting
• Would be like combining per-vertex specular with

per-pixel diffuse
• Looks like a bumpy surface with a smooth enamel

gloss coat
• Really need per-fragment reflection mapping

• Doing it right requires a lot of high-precision per-
fragment math!

6

Pseudo-Reflective (offset)
Bump Mapping

• Correct per-fragment reflection mapping requires
• Dependent texturing support
• Complex (expensive) per-fragment math

• Solution: approximate the math
• This approach is (unfortunately) called

“Environment Map Bump Mapping” or EMBM
• The environment map is a 2D texture, and the

“bump map” texture supplies a per-fragment
perturbation to the environment map

• Offset texturing is implemented using the
OFFSET_TEXTURE_2D texture shader operation
on GeForce3

7

Example

8

What are Offset Texture
Shaders? (1)

00

TEXTEX
##

Texture Coords
(S,T,R,Q)

Shader
Operations

Texture
Fetch

(S0,T0,R0,Q0)
Texture

2D

2D DSDT

11

(,)

Bound Texture
Target/Format

(0,0,0,0)Q0

S0

Q0

T0

(S1,T1) (S1’, T1’)
S1’ = S1+ k0*ds + k2*dt
T1’ = T1+ k1*ds + k3*dt

(ds,dt)

R1G1B1A1
2D

Any Format

k0, k1, k2 and k3 define a constant 2x2 “offset matrix” set by glTexEnv

9

What are Offset Texture
Shaders? (2)

00

TEXTEX
##

Texture Coords
(S,T,R,Q)

Shader
Operations

Texture
Fetch

Output
Color

(S0,T0,R0,Q0)
Texture

2D

2D DSDT

11

(,)

Bound Texture
Target/Format

(0,0,0,0)Q0

S0

Q0

T0

(S1,T1) (S1’, T1’)
S1’ = S1+ k0*ds + k2*dt
T1’ = T1+ k1*ds + k3*dt

2D Any Format

(ds,dt)

R1G1B1A1

k0, k1, k2 and k3 define a constant 2x2 “offset matrix” set by glTexEnv

10

DSDT Texture Format

• GL_DSDT_NV
• This format encodes an offset vector in texture

space
• ds and dt are mapped to the range [-1,1]

s

t

offset vector

ds

dt

11

The constant 2x2
texel transform matrix

• Per-stage 2x2 matrix (O) transforms the [ds,dt]t

before biasing the incoming (s,t)

• Offset texture 2D matrix should also include
scaling since ds and dt are low precision

s

t
ds

dt

DSDT from previous stage

s

t

ds’

dt’

Offset texture 2D
matrix








 −
=

θθ
θθ

cossin
sincos

O

θ
















 −
=








=








dt
ds

dt
ds

dt
ds

θθ
θθ

cossin
sincos

'
'

O

12

Why the 2x2 matrix?

• When texels have spatial meaning the orientation
of the surface matters!

dimple effect object rotation
changes dimple to
vortical distortion!

object
rotation

2x2 texel
rotation

object rotation with
dimple effect requires

2x2 transform per-texel

13

Limitations of the
constant 2x2 matrix

• The constant 2x2 matrix limits the usefulness of
this technique to flat objects.

Mountains poke in!

North Pole North Pole

Constant 2x2 Texel Matrix
(using OFFSET_TEXTURE_2D)

Per-Vertex 2x2 Texel Matrix
(using DOT_PRODUCT_TEXTURE_2D)

Correct Incorrect

14

Other Limitations of Pseudo-
Reflective Bump Mapping

• It simply applies a per-fragment perturbation to a
2D reflection map lookup

• If perturbation is too great, weird results…

normal bump scale large bump scale

15

True Reflective Bump Mapping

• True reflective bump mapping solves the
shortcomings of offset bump mapping by
evaluating the reflection equation per-fragment
• More complicated than you might think…

• Must transform normals into cubemap space per-
fragment (3x3 texel matrix)

• Must interpolate cubemap space eye vector
• Per-fragment reflection vector looked up into cube

map

16

Example

17

Basic shader configuration
• This is the standard configuration for reflective

bump mapping with NV_texture_shader
• The normal map can be HILO or RGB

• -stage0: TEXTURE_2D
• texture image is normal map

• -stage1: DOT_PRODUCT
• no texture image

• -stage2: DOT_PRODUCT
• no texture image

• -stage3: DOT_PRODUCT_REFLECT_CUBE_MAP
• texture image is cubic environment map

18

Object-Space Reflective Bump
Mapping

• The dot_product_reflect demo renders a
single bumpy, reflective quad
• Normal map defined in object-space
• Cubic environment map space is same as eye-

space in this example
• Reflection vector is calculated per-pixel

Cubic
environment
map

eye

Reflective quad

19

Reflective Bump Mapping

cubic
environment
map

eye

bumpy reflective quad

bump map

20

Rendering

• The normal vector and eye vector must be
transformed into cubemap-space (which is the
same as eye space in this example)
• Normal vector is multiplied by the upper 3x3 of the

inverse transpose of the MODELVIEW matrix, the
same as object-space per-vertex normals are
treated for per-vertex lighting in OpenGL

• The eye vector is calculated per-vertex, and
because the eye is defined to be at (0,0,0) in eye-
space, it is simply the negative of the eye-space
vertex position

21

Rendering (2)

• Given the normal vector (n’) and the eye vector (e)
both defined in cubemap-space, the reflection
vector (r) is calculated as

• The reflection vector is used to look into a cubic
environment map

• This is the same as per-vertex cubic environment
mapping except that the reflection calculation
must happen in cubemap-space

()
() e

nn
ennr −
′•′

•′′
= 2

22

Details (for dot_product_reflect)

• The per-vertex data is passed in as the texture
coordinates of texture shader stages 1, 2, and 3
• The upper-left 3x3 of the inverse transpose of the

modelview matrix (M-T) is passed in the s, t, and r
coordinates

• note: M-T ≡≡≡≡ M for rotation-only matrices
• The (unnormalized) eye vector (ex, ey, ez) is

specified per-vertex in the q coordinates

(s1, t1, r1, q1) = (M-T
00, M-T

01, M-T
02, ex)

(s2, t2, r2, q2) = (M-T
10, M-T

11, M-T
12, ey)

(s3, t3, r3, q3) = (M-T
20, M-T

21, M-T
22, ez)

23

“True Reflective Bump Mapping”?
• Unlike the “EMBM” technique, this method

performs real 3D vector calculations per-pixel!
• Calculations:

• Transform of the normal map normal (n) by the texel
matrix (T) to yield (n’)

• Evaluation of the reflection equation using n’ and e

Note that this equation does not require n’ to be normalized

• The resulting 3D reflection vector is looked up into a cubic
environment map

• This IS true reflective bump mapping

Tnn =′

()
() e

nn
ennr −
′•′

•′′
= 2

24

dot_product_reflect Results

• A screen shot from the running demo

25

Tangent-Space Reflective Bump
Mapping

• The dot_product_reflect_torus demo
renders a bumpy, reflective torus
• Normal map defined in tangent-space
• Cubemap-space is same as eye-space
• Reflection vector is calculated per-pixel

Cubic
environment
map

eye

Reflective torus

26

Reflective Bump Mapping
(in dot_product_reflect_torus)

cubic
environment
map

eye

bumpy reflective torus

bump map

27

Rendering

• The texture coordinates are the same in this
example as in dot_product_reflect, with the
notable exception that the surface-local
transform (S) must also be applied to the normals
in the normal map
• Normal vector is multiplied by the product of the

upper-left 3x3 of the inverse transpose of the
MODELVIEW matrix (M-T) and the matrix (S) whose
columns are the tangent, binormal, and normal
surface-local basis vectors

28

Rendering (2)

• The texel matrix (T) is defined as the product of
the upper-left 3x3 of the inverse transpose of the
modelview matrix (M-T) and the surface-local-
space to object-space matrix (S)
































==

−−−

−−−

−−−

−

zzz

yyy

xxx

NBT
NBT
NBT

MMM
MMM
MMM

T
22

T
21

T
20

T
12

T
11

T
10

T
02

T
01

T
00

TSMT

29

dot_product_reflect_torus
Details

• The texel matrix (T) and eye vector (e) are
specified in the texture coordinates of stages 1, 2,
and 3

(s1, t1, r1, q1) = (T00, T01, T02, ex)
(s2, t2, r2, q2) = (T10, T11, T12, ey)
(s3, t3, r3, q3) = (T20, T21, T22, ez)

30

dot_product_reflect_torus
Results

• A screen shot from the running demo

31

Related Information

• See the bumpy_shiny_patch presentation and
demo for
• Using NV_evaluators
• Tangent-space reflective bump mapping
• NV_vertex_program for performing setup

32

Questions, comments, feedback

• Cass Everitt, cass@nvidia.com
• www.nvidia.com/developer

